Physics 233 - General Physics 3

Homework
Schedule of homework/assignments due. Note that reading and short problems are due on Tuesdays and Thursdays at 9:30 am and long problems are due Fridays at 2 pm . Graded short problems will be returned during the same class, long problems will be available Mondays at 9 am . Corrections to short problems are due the next class at 9:30 am and to the long problems are due the following Tuesday at 9:30 am.

Chap. E15	Short Prob. B5, \#1 below	Long Prob. S2, S5			
Q1	S2, B7, S8	S6, S7, R2, ws	Tuesday	Thursday	Friday
Q2	B5, S2, S8	S5, S12, R1, ws	9/6 E15	9/8 Q1	9/9 E15 \&Q1
Q3	B3, B4, S4	S2, S8, R1	9/13 Q2	9/15 Q3	9/16 Q2\&Q3
Q4	B3, B6, S4	S5, S8, R2	9/20 Q4	9/22 Q5	9/23 Q4\&Q5
Q5	B7, B10, S3	S4, S6, R1	9/27 Q6	9/29 Q7	9/30 Q6\&Q7
Q6	B1, B6, S4	S7, S9, R2, ws S5, 6 ,	10/4 Q8	10/6 Q9	10/7 Q8\&Q9
Q7	B2, B5, S1 B1, S5, S8	S5, S6, S9	10/11 FB	10/13 Q10	10/14 Q10
Q9	B2, S2 B2,	B5, S4, ws	10/18	0/21 optics	reciation week
Q10	S1, S2, S5	S8, R1, ws	10/25 Q11	10/27 rev	10/28 Q11
Q11	S1, S4	S3, S6, \#2 below	11/1 rev	11/3 T1	11/4 T1
T1	S3, S9	S5, S7	11/8 T2	11/10 T3	11/11 T2\&T3
T2	RE1, S4	S2, S7, S6, R1	11/15 T4	11/17 T5	11/18 T4\&T5
T3	S2, S7	S4, S5, S9, R1	11/22 T6	Thanksgivi	Break
T4	B3, S3	B2, S4, S6, S8	11/29 T7	12/1 T8	12/2 T6\&T7\&T8
T5	S3, S7	S2, R2, ws	12/6 T9	12/8 rev	12/9 T9
T6	B2, S3	S4, S6, S8	12/14 exam 3 pm		
T7	S2, S7	S3, R2, ws			
T8	B3, S3	S1, S6, S8			
T9	S6, S7	S3, S9, S14, R2			

Extra Problems:

1. A sinusoidal wave moving along a string is shown twice in Figure 1632, as crest A

travels in the positive direction of an x axis by distance $d=0.65 \mathrm{~cm}$ in 86.0 ms . The tick marks along the axis are separated by 0.5 cm . Include rad in your units where appropriate. The wave equation is of the
form: $y(x, t)=y_{m} \sin (k x \pm \omega t)$
a. What is the amplitude, y_{m} ?
b. What is the wavelength?
c. What is the wavenumber, k ?
d. What is the angular frequency, ω ?
e. What is the frequency, f ?
f. What is the correct choice of sign in front of ω ?
2. At time $t=0$ a particle is represented by the wave function

$$
\Psi(x, t)=\left\{\begin{array}{cc}
A \frac{x}{a}, & \text { if } 0 \leq x \leq a \\
A \frac{(b-x)}{(b-a)}, & \text { if } a \leq x \leq b \\
0, & \text { otherwise }
\end{array}\right.
$$

where A, a, and b are constants.
a. Normalize Ψ (that is, find A in terms of a and b).
b. Sketch $\Psi(x, 0)$ as a function of x.
c. Where is the particle most likely to be found, at $t=0$?
d. What is the probability of finding the particle to the left of a ? Check your result in the limiting cases $b=a$ and $b=2 a$.

